4.83 bismuth | Stable | Relative | Mole | |-----------------------------|-------------|----------| | isotope | atomic mass | fraction | | $^{209}\mathrm{Bi}^\dagger$ | 208.980 40 | 1 | † Radioactive isotope having a relatively long half-life (2.0 × 10¹⁹ years) and a characteristic terrestrial isotopic composition that contributes significantly and reproducibly to the determination of the standard atomic weight of the element in normal materials. ## 4.83.1 Bismuth isotopes in medicine ²¹²Bi and ²¹³Bi (with half-lives of 1 hour and 0.76 hours, respectively) are both used in medicine for **radioimmunotherapy** as bismuth-labeled **monoclonal antibodies** to treat cancer cells from melanoma (skin cancer) (Figure 4.83.1) and ovarian cancer [556]. Figure 4.83.2 compares the biologic effect of ¹³¹I and ²¹³Bi using a specific monoclonal antibody, B-B4, coupled to ²¹³Bi by ## **IUPAC** a chelating agent (a substance that can form multiple bonds to a single metal ion). 213 Bi is a mixed alpha and beta emitter having a **half-life** of 46 minutes. The primary mode of decay is by beta emission to the very short-lived, alpha emitter 213 Po. The 8.4 MeV **alpha particle** emitted by 213 Po has a path length of 76 μ m in human tissue and is responsible for its cytotoxic effects (toxic to living cells). 213 Bi is produced from the decay of 225 Ac, which is a pure alpha emitter with a half-life of 10 days. A schematic of the Institute for Transuranium Elements (ITU) Standard 225 Ac/ 213 Bi Radionuclide Generator is shown in Figure 4.83.3. ²¹²Bi has been used for radioimmunotherapy of leukemia and for targeting the vascular endothelial cells (thin layer of simple squamous cells that forms the interface between circulating blood or lymph and the remainder of the vessel wall) of tumors [557]. **Fig. 4.83.1:** Melanoma (skin cancer) on a patient's foot. ²¹²Bi and ²¹³Bi are both used as bismuth-labeled **monoclonal antibodies** to treat cancer cells from melanoma. (Photo Source: Kelly Nelson, National Cancer Institute) [558]. **Fig. 4.83.2:** Comparison of biological effectiveness of ²¹³Bi and ¹³¹I when coupled to the specific **monoclonal antibody** B-B4 (modified after [559]; MBq/L, million becquerels per liter. **Fig. 4.83.3:** Schematic of the Institute for Transuranium Elements (ITU) Standard ²²⁵Ac/²¹³Bi Radionuclide Generator. Image kindly provided by Dr. Alfred Morgenstern, European Commission, Joint Research Centre – Institute for Transuranium Elements, Karlsruhe, Germany. ## 4.83.2 Bismuth isotopes used as a source of radioactive isotope(s) ²⁰⁹Bi is bombarded with **neutrons** in a nuclear reactor to form radioactive ²¹⁰Bi, which decays to ²¹⁰Po, which is used in static eliminators in machinery [72].