



## 4.65.1 Terbium isotopes in medicine

<sup>149</sup>Tb (with a **half-life** of 4.1 hours) is being used in targeted **radiotherapy** using **alpha particles** for labeling **radioimmunoconjugates** in cancer treatments [455, 456]. <sup>161</sup>Tb (with a half-life of 6.9 days) attached to a bioconjugate (two **covalently** linked molecules, one or more of which is a biomolecule), is being used in cancer therapy as a targeted radiation treatment of cancer cells [456, 457]. <sup>161</sup>Tb is being used for imaging as it allows for on-line monitoring of its distribution using **gamma cameras** [457]. <sup>149</sup>Tb is produced by the reaction <sup>142</sup>Nd(<sup>12</sup>C,5n)<sup>149</sup>Dy  $\rightarrow$  <sup>149</sup>Tb +  $\beta$ <sup>+</sup>

## P.O. 13757, Research Triangle Park, NC (919) 485-8700

## IUPAC

and by  ${}^{141}$ Pr( ${}^{12}$ C,4n) ${}^{149}$ Tb, and beam geometry is important for satisfactory yield of  ${}^{149}$ Tb (Figure 4.65.1) [458].



**Fig. 4.65.1:** Relative production of <sup>149</sup>Tb from the reaction <sup>142</sup>Nd(<sup>12</sup>C,5n)<sup>149</sup>Dy  $\rightarrow$  <sup>149</sup>Tb +  $\beta$ <sup>+</sup> for two different beam geometries. A ten-fold increase in production is achieved by optimal beam geometry (January 1996) (modified from [458]).