

4.40 zirconium

Stable	Relative	Mole
isotope	atomic mass	fraction
⁹⁰ Zr	89.904 70	0.5145
91 Zr	90.905 64	0.1122
92 Zr	91.905 03	0.1715
94 Zr	93.906 31	0.1738
$^{96}\mathrm{Zr}^{\dagger}$	95.908 27	0.0280

Radioactive isotope having a relatively long **half-life** $(2.3 \times 10^{19} \text{ years})$ and a characteristic terrestrial isotopic **composition** that contributes significantly and reproducibly to the determination of the standard atomic weight of the element in normal materials.

Half-life of radioactive isotope

Between 1 hour and 1 year

Less than 1 hour

4.40.1 Zirconium isotopes in industry

Zirconium enriched in 90Zr has been proposed for the cladding (covering) of reactor fuel elements (Figure 4.40.1) because it has a lower **neutron absorption cross section** than natural abundances of zirconium and is well suited for coverage of metal parts without absorbing neutrons [304].

5

Fig. 4.40.1: The cores of nuclear reactors have fuel pins that are typically made of uranium-oxide. To keep **fission** products from escaping into the coolant, these pins are surrounded by a zirconium clad. (Modified from [305]).