4.28 nickel

Because molecules, atoms, and ions of the **stable isotopes** of nickel possess slightly different physical and chemical properties, they commonly will be fractionated during physical, chemical, and biological processes, giving rise to variations in **isotopic abundances** and in **atomic weights**. There are measurable variations in the isotopic abundances of nickel in terrestrial silicate rocks (Figure 4.28.1) [225].
Fig. 4.28.1: Variation in isotope-amount ratio $n(\text{60Ni})/n(\text{58Ni})$ of terrestrial nickel-bearing silicate rocks (modified from [225], assuming a measured $n(\text{60Ni})/n(\text{58Ni})$ isotope-amount ratio of 0.385 198 [226].

4.28.2 Nickel isotopes in geochronology

Anomalies in 60Ni abundance caused by decay of now extinct 60Fe have been used to study the early history of our Solar System (see Iron isotopes in Earth/planetary science). 59Ni is a cosmogenic radionuclide with a half-life of 7.6×10^4 years. Decay of 59Ni has been used to assess the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment [227].

4.28.3 Nickel isotopes in industry

63Ni (with a half-life of 99 years) is produced from stable 62Ni and is a beta-emitting radionuclide that serves as an electron source together with 55Fe in electron-capture detectors. Electron-capture detectors are used as thickness gauges or as detectors for organic analytes in gas chromatography (Figure 4.28.2) [105]. 63Ni is also used to ionize substances in ion mobility spectrometry—the basis of the instrument used in airports to screen passengers for drugs and
bombs [228]. 63Ni is also used as a fluorescence-inducing source in elemental analysis by X-ray fluorescence spectroscopy and in miniaturized long-lived nuclear batteries [105]. Until the mid-1980s, nuclear batteries were used in pacemakers, but then they were replaced by long-lasting lithium batteries [229].

Fig. 4.28.2: Shimadzu GC-8A Gas Chromatograph (GC) with an Electron-Capture Detector (ECD). (Image Source: The Reston Chlorofluorocarbon Laboratory, U.S. Geological Survey) [230, 231].

4.28.4 Nickel isotopes used as a source of radioactive isotope(s)

61Ni is used as a radiation target for production of the radioactive isotope 61Cu (with a half-life of 3.3 hours), which emits positrons for positron emission tomography (PET) applications using the 61Ni (p, n) 61Cu reaction. 64Ni is used as a radiation target for production of 64Cu (with a half-life of 12.7 hours), which is used in radioimmunotherapy by attaching it to an antibody for delivery of cytotoxic radiation (toxic to living cells) to a target cell via the 64Ni (p, n) 64Cu reaction [232]. 60Ni is used for the production of 57Co (with a half-life of 0.75 year), which is used as a reference source for gamma cameras that are used in nuclear medicine via the 60Ni (p, 4He) 57Co reaction [232].