4.78 platinum

Stable	Relative	Mole
isotope	atomic mass	fraction
¹⁹⁰ Pt [†]	189.959 93	0.000 12
¹⁹² Pt	191.961 04	0.007 82
¹⁹⁴ Pt	193.962 681	0.328 64
¹⁹⁵ Pt	194.964 792	0.337 75
¹⁹⁶ Pt	195.964 952	0.252 11
¹⁹⁸ Pt	197.967 89	0.073 56

† Radioactive isotope having a relatively long half-life (4.9 × 10¹¹ years) and a characteristic terrestrial isotopic composition that contributes significantly and reproducibly to the determination of the standard atomic weight of the element in normal materials.

Half-life of radioactive isotope

Less than 1 hour

4.78.1 Platinum isotopes in Earth/planetary science

Astrophysicists have confirmed an anomaly in the **isotopic composition** of platinum in the chemically peculiar HgMn star χ Lupi, and the platinum isotopic composition was shown to be a mixture of ¹⁹⁶Pt and ¹⁹⁸Pt (Figure 4.78.1) [523].

Fig. 4.78.1: Observed spectra of the chemically peculiar HgMn star χ Lupi (solid blue line) compared to a synthetic spectra calculated with a mixture of 70 percent ¹⁹⁶Pt and 30 percent ¹⁹⁸Pt (dotted pink line) (modified after [523]).

4.78.2 Platinum isotopes in geochronology

The decay of ¹⁹⁰Pt to ¹⁸⁶Os over time has been used for dating rocks and iron **meteorites** [524].

4.78.3 Platinum isotopes in medicine

^{195m}Pt (with a half-life of 4 days) is used for **pharmacokinetic** studies of platinum-based antitumor agents in cancer diagnosis and cancer therapy [185]. The m the superscript of ^{195m}Pt indicates a **metastable isotope**. ^{195m}Pt can be produced from the **stable isotopes** ¹⁹²Os or ¹⁹⁵Pt via the ¹⁹²Os (α, n) ^{195m}Pt reaction and the ¹⁹⁵Pt (n, n') ^{195m}Pt reaction, respectively.