4.19 potassium

Potassium isotopes in biology

The mole fraction of 40K ($n(^{40}$K)/n(K)) is used to study the effects of potassium in soil on the growth of plants. Plants need potassium to promote growth and reproduction, and potassium also helps plants resist drought and diseases. The mole fraction of 40K is being studied at different depths in several soil types to determine how soil properties affect the fractionation of 40K [175].

Potassium isotopes in geochronology

The mole ratio $n(^{40}$K)/n(^{40}Ar) is used in potassium-argon dating by geologists, archaeologists, and paleoanthropologists to determine the age of rocks. This dating method is based on the
radioactive decay of 40K, having a half-life of 1.248×10^9 years, to 40Ar. When lava crystalizes, 40Ar can no longer escape and begins increasing in concentration in a rock (Figure 4.19.1) [176, 177].

Fig. 4.19.1: Deeper, older igneous rocks will have a higher 40Ar concentration than younger igneous rock, and this technique requires rocks older than 1×10^5 years in order that sufficient 40Ar has accumulated.

4.19.3 Potassium isotopes in medicine

38K, which has a half-life of 7.6 minutes and is produced by a nuclear reaction involving 38Ar and 40Ar as targets, is a widely used blood-flow tracer. Because 38Ar is more expensive, 40Ar, which also offers many additional advantages as a target, is more commonly used to produce 38K for medical purposes [72, 173, 178].