4.88 radium

4.88.1 Radium isotopes in Earth/planetary science

The **radioactive isotopes** ²²³Ra (with a **half-life** of 275 hours), ²²⁴Ra (with a half-life of 88 hours), ²²⁶Ra (with a half-life of 1600 years), and ²²⁸Ra (with a half-life of 5.75 years) are used as **tracers** to determine water flow rates. They are ideal environmental tracers because they behave conservatively once released into a water mass (meaning only mixing and decay processes affect their distribution) [575]. The activity ratios $A(^{224}Ra)/A(^{223}Ra), A(^{223}Ra)/A(^{226}Ra), A(^{224}Ra)/A(^{228}Ra), and A(^{228}Ra)/A(^{226}Ra)$ have been used in lake studies to monitor and detect water inflow and mixing, to determine sources of inflowing water, and to monitor introduced

P.O. 13757, Research Triangle Park, NC (919) 485-8700

IUPAC

water masses as they move within a body of water (i.e. a lake) [575, 576]. For example, submarine groundwater discharge is an important pathway that transports dissolved substances from aquifers below a seabed to the coastal ocean. Submarine groundwater discharge can be difficult to quantify because it is both spatially and temporally variable. As a result, its relative importance in coastal ocean chemical budgets is commonly poorly known. Peterson et al. [569] used an hourly time series of measurements of multiple radium isotopes ²²³Ra, ²²⁴Ra, and ²²⁶Ra to quantify submarine groundwater discharge. They also used ²²²Rn (with a half-life of 3.8 days) measurements to independently quantify submarine groundwater discharge.

4.88.2 Radium isotopes in geochronology

²²⁶Ra and ²²⁸Ra can be used for dating materials up to a few thousand years in age because the half-lives of ²²⁶Ra and ²²⁸Ra are 1,600 years and 5.75 years, respectively, even though the long-lived ²²⁶Ra is found in nature as a result of its continuous production by the decay of ²³⁸U. For example, long-lived ²²⁶Ra has been used to date a limestone cave in central Switzerland, Indian Ocean corals, and Pleistocene gravel terraces [577]. The activity ratio $A(^{224}Ra)/A(^{223}Ra)$ is a potential age calculator for old lake water because the low ²²³Ra and ²²⁴Ra activities in old lake water are relatively unaffected by mixing [576].

4.88.3 Radium isotopes in medicine

²²⁶Ra is used in **brachytherapy** (Figure 4.88.1), which is a method of localized treatment of various types of cancer. A sealed implant (such as a rod, seed, or needle) containing the **radioactive isotope** ²²⁶Ra is inserted into or near a patient's tumor to apply a high dose of radiation to the tumor. The sealed implant is inserted by a physician or by an automated device (called a remote afterloader), and it is removed from the patient once the tumor is destroyed [72, 578].

Fig. 4.88.1: Brachytherapy seeds shown with a penny (19-mm diameter) for scale (modified from [579]).