4.86 radon

Both 220Rn and 222Rn (with half-lives of 56 seconds and 3.8 days, respectively) are used to study underground environmental as well as atmospheric gaseous-transport processes [565-567]. The interaction of radon with streams and rivers enables it to be used commonly as a tracer in groundwater studies (Figure 4.86.1). 222Rn has a short residence time in streams and river
channels, which leads to radon loss. As a result, if an area of a stream or river has a high concentration of radon, it suggests that there are local groundwater inputs [565-567]. In a deep (100 m) contaminated aquifer at a refinery site in Mexico, where the contaminated source was too deep to be directly accessible for sampling, Schubert et al. [568] collected groundwater samples from a few wells available at the site. They used the partitioning of the natural tracer 222Rn between uncontaminated groundwater and the NAPL (non-aqueous phase-liquid like oil, gasoline, and petroleum) source zone, and they were able to approximately identify the location of the NAPL source zone. As noted in Section 4.88.1, 222Rn has been used to quantify submarine groundwater discharge [569].

![Fig. 4.86.1: Air-water equilibrator, which strips radon out of water and into the gas phase so it can be used as a groundwater tracer. (Photo Source: John Crusius, U.S. Geological Survey) [570].](image)

4.86.2 Radon isotopes in geochronology

222Rn has been used as a tool to date groundwater when used in combination with other isotopes or elemental ratios (i.e., helium/radon and xenon/radon mole ratios have been used to date groundwater) [565, 571].